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Abstract: A practical synthesis of the optically active @ side-chain unit
present in mexiprostil, a PGE] analogue, by starting from readily available
optically pure 4 has been developed. Synthesis of mexiprostil via two-
component coupling process by using the ® side-chain thus prepared has been
carried out.

In connection with a study directed toward an enantioselective synthesis of the
prostaglandin derivative mexiprostil (1), a Merrell-Dow compound, which has been shown to
inhibit gastric acid secretion and to protect the gastric mucosa,] the synthesis of the compound
2 which can be used as ® side-chain unit for synthesis of 1 via two- or three- component
coupling process, has been attracted much interest.2 The reported synthetic method, however,
suffers from some disadvantages such as low optical purity (>70% ee).
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In relation to our recent project to make the two-component coupling synthesis of
prostaglandins as industrially viable process by developing highly practical methods to prepare
chiral intermediates required for this process including @ side-chain unit,3 we have now
succeeded in developing an efficient method for synthesis of 2 by starting from the epoxy ether
4 which can be readily prepared in an optically pure form by the Sharpless asymmetric
epoxidation of the allylic alcohol 3.4 We also report the synthesis of the disilyl ether of 1 by
using 2 via two-component coupling process.

The synthesis of 2 from 4 is outlined in Scheme 1 in which the construction of the
adjacent two chiral centers was carried out by applying the highly diastereoselective addition
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2 a) TBHP, TO'Pr)4, D-(-)-DIPT, CHaClp, -20°C, 3.5h ; b) MOMCI, NaH, THF,
room temp., 10min. ; ¢) "BU4NF. THF, roomtemp., 3h ; d) LiAlH4, THF, 0°c,
10 min ; ¢} PCC, CHxClp, mom temp., 6h, or (COCl)2, DMSO, EtzN,
CHuCl, 60°C, 1h ; f) "BuMgBr, THF, -78°C, 2h ; g) Mel, NaH, THF,

room temp., 2h ; h) p-TsOH, MeOH, room temp., 8h ;i) cat. VO{acac)s,
TBHP, CHxCl, room temp., 5h ;j) "BusSnH, LDA, THF, room temp., 3h ;

k) TBDMSCI, imidazole, DMF, room temp., Sh.

reaction of Grignard reagents to ot-alkoxy ketones.J Thus, selective protodesilylation of epoxy
ether 44 followed by epoxide ring opening with LiAlH4 gave the diol derivative 5 ([o]D25 -
130.5 (c 1.43, CHCI3))® in 80% yield. Oxidation of § with PCC or (COCl)2-DMSO-Ei3N
and the reaction of the resulting ketone with NBuMgBr in tetrahydrofuran at -78 OC afforded the
tertiary alcohol 6 ([c]D23 -98.0 (c 1.09, CHCI3))7 with syn-configuration exclusively.5 The
overall yield of 6 from § was 71% (via PCC oxidation) or 78% (via Swern oxidation).
Treatment of 6 with CH3I in the presence of NaH and deprotection of the secondery ether
portion provided 7 ([a]p25 +33.8 (c 1.11, CHCI3))8 in 77% yield. The optical purity of 7
thus obtained was confirmed to be >99% e¢ by 1H nmr analysis after converting into its MTPA
ester, while the absolute configuration of the newly created chiral center was found to be R by
converting into the known compound 812 according to the procedure shown in eq 1. The
compound 7 was converted into 2 ([]p25 -13.9 (c 1.52, CHCI3)) 9 in 66% overall yield by
the following sequences : 1) epoxidation, 2) regiospecific epoxide ring opening with "Bu3SnLi
which was succeeded by in situ Peterson olefination, and 3) protection of the alcohol. Thus, 2
was prepared from 4 in 32% overall yield through 9 steps.
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With optically pure 2 in hand we carried out the synthesis of disilyl ether of 1 via two-
component coupling process (eq 2). The compound 2 was converted into higher ordered cyano
mixed cuprate by successive treatment with nBuLi and (2-thienyl)Cu(CN)Li10 in THF. To this
solution was added optically pure enone 93e.f a¢ -780C and the reaction mixture was stirred for
1h at -780C ~ 00C to give the disilyl ether of 1 ([a]D25 -22.6 (c 0.62, CHCI3))11:12 in 81%

yield.
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